

1048576-BIT DUAL-PORT DYNAMIC RAM

DESCRIPTION

The Mitsubishi M5M482128J is a high speed 1048576-bit Dual Port Dynamic Memory equipped with a 128K x 8 Dynamic RAM Port and a 256 x 8 Serial Read/Write Port. The use of triple-layer polysilicon CMOS process combined with silicide technology and a single transistor dynamic storage cell provide both high circuit density and low power dissipation.

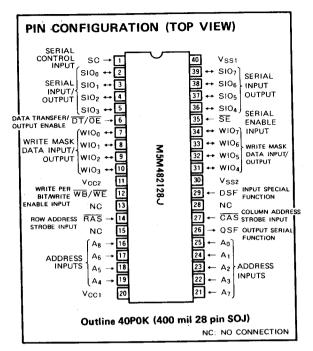
The Serial Read/Write Ports are connected to an internal 2,048 bit Data Register through a 256 x 8 Serial Input/ Output Control circuit and can be serially readout or written in with a clock rate of up to 33MHz.

All reads and writes are done relative to the RAM array, thus Data transfer from the RAM array to the Data Register is referred to as a Read Transfer, while Data Transfer from the Data Register to the RAM array is referred to as a Write Transfer.

FEATURES

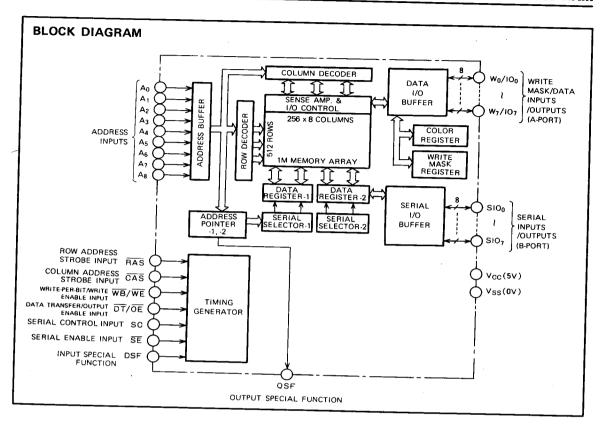
Type name	RAS Access Time (ns)	Random Read/Write Cycle Time (ns)	Serial Read Cycle Time (ns)	Random Read/Write V _{CC} Supply Current (mA)	
M5M482128J-8	80ns	160ns	30 n s	80 m A	60 m A
M5M482128J-10	100ns	190ns	30 n s	70 m A	50 m A
M5M482128 J-12	120ns	220ns	40 n s	60 m A	40 m A

Dual Port Architecture


RAM Port: 128K-word x 8-bit

Serial Port: 256 word x 8-bit

- Bidirectional Data Transfer function between the RAM array and the Data Register.
- Fully Asynchronous Dual Port Accessability (Split SAM)
- Addressable Start of Serial Read/Write (Pointer Control Function)
- Write per Bit Function
- Real Time Data Transfer from the RAM Array to the Data Register.
- Fast Page Mode, Hidden Refresh and CAS before RAS Refresh.
- 512 cycle/8ms Refresh.
- Flash write operation.
- Block write operation


APPLICATION

Display equipment for personal computer/work station, Frame memory for digital TV/VTR, Videotex, Teletext, Video printer, High Speed data transmission systems.

1048576-BIT DUAL-PORT DYNAMIC RAM

4-78

1048576-BIT DUAL-PORT DYNAMIC RAM

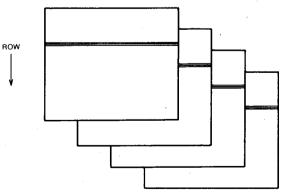
PIN DESCRIPTION

Pin	Name	Function
RAS	ROW ADDRESS STROBE	It is used as a clock which latches the row address ($A_0 \sim A_8$) to select the word line. It also latches the mask data for Write-per-bit, Flash write and Split write transfer functions when the \overline{WB} level is low. \overline{CAS} before \overline{RAS} refresh mode is activated when preceeded by \overline{CAS} falling low.
CAS	COLUMN ADDRESS STROBE INPUT	It is used as a clock which latches the column address ($A_9 \sim A_{16}$) and initiates the reading or writing of the selected words. In the data transfer cycle, this latches the SAM Top address point. (TAP)
A ₀ ~A ₈	ADDRESS INPUT	The M5M482128 utilizes an address multiplex method for selecting one word among the 128K-word memory cells. 9 row addresses and 8 column addresses are latched by the RAS and CAS falling edge. In the data transfer cycle, this address input is also combined with the serial access start address. (TAP)
WB/WE	WRITE-PER-BIT/WRITE ENABLE INPUT	When the WB/WE level is low at the RAS falling edge Write-per-bit (RAM write with mask), Write transfer with MASK or Flash write with MASK cycle is selected. When it is high, normal read/write. Read transfer or Load color register cycle is selected. This clock also controls early/late write mode at the CAS falling edge.
DT/OE	DATA TRANSFER/OUTPUT ENABLE INPUT	When the $\overline{\text{DT}}/\overline{\text{OE}}$ level is low at the $\overline{\text{RAS}}$ falling edge, the data transfer cycle is selected and when it is high, RAM read/write cycle, Load color register cycle or Flash write cycle is activated according to the $\overline{\text{WB}}/\overline{\text{WE}}$ and DSF combination. In the RAM read cycle, it enables the data output (RAM port).
WIOn*	WRITE MASK / DATA INPUT/OUTPUT	These are the data input/output pins to the RAM. During RAM write-per-bit cycle, Split write transfer cycle or Flash write cycle, high data input at the RAS falling edge enables the selected-bit (row) for write operation. In the write cycle, the data is latched at the falling edge of the CAS or the WB/WE input, whichever is the later.
SC	SERIAL CONTROL INPUT	All serial access is initiated from the SC clock rising edge. In the serial read cycle, the output data is held until the next clock rise. Also in the serial write cycle, the data is latched at the SC clock rising edge.
SIOn*	SERIAL INPUT/OUTPUT	256 x 8 word serial data input/output pins.
SE	SERIAL ENABLE INPUT	This enables the serial input/output. In the write transfer cycle when SE is high at the RAS falling edge, Pseudo transfer cycle is selected, and when it is low, Write transfer cycle is selected.
DSF	INPUT SPECIAL FUNCTION	This input defines special functions such as Split read/write transfer, Flash write, Block write and Load color register. When it is set low, the device works as a basic dual-port memory except for the Normal write transfer cycle masking mode.
QSE	OUTPUT SPECIAL FUNCTION	Output indicating the serial data selector status.

Note *: n = 0 ~ 7.

1048576-BIT DUAL-PORT DYNAMIC RAM

128Kx8 Truth Table


Code			ŘĂ	5 falling) edge			Ĉ	AS fall	ing edg	e	Write		F	legister		
-mnemo nic	CAS		WB	DSF	SĒ	Addr	wion	WB/WE	DSF	Addr	WIOn	mask	Raster op.	Write temporary	mask persistant	Color	
Onting	0	0	0	0	—	-				—			—		—	—	None use
Option	0	0	0	1	-	-	—	<u> </u>	-	ł		-	_	—	—	—	C.B.R
CBR	0	0	1	0	+	-	-	-		1	-		1	_	_	_	C.B.R
OBIT	0	0	1	1	·		—	—	_	—							C.D.N
CBR	0	1	0	0	-	-	-		—	_		_	_	_	_	_	C.B.R
	0	1	0	1	_	-	— .	-	-	-	_						0.5.11
CBR	0	1	1	0		-	—	-	+	ł	—_	_	_	_	_	_	C.B.R
0.2.1.	0	1	1	1	-	_	-	—		_							0.0
м₩Ҭ∕	1	0	· 0	0	9/1	Row/Ret	WM1		0	ΤΑΡ		Yes	_	Load use		_	Wr. transfer (SE=0)
PWT	1	0	0	0	9/1	Row/Ref	WM1	—	1	TAP		per row					Pseudo write transfer (SE=1)
SWT	1	0	0	1		Row	WM1 WM1	_	0	TAP TAP	-	Yes per row	-	Load use		-	Split write transfer with new mask
	1	0	1	0		Row		_	0	TAP							,
RT	1	0	1	0	_	Row	_	_	1	ΤΑΡ		-			-	-	Read transfer
0.0.7	1	0	1	1	—	Row	-	Ţ	- 0	ΤΑΡ							
SRT	1	0	1	1	—	Row	—		1	TAP	—	_	_	_	_		Split read transfer
RWNM	1	1	0	0	<u>·</u>	Row	W M1	∗ E/L	0	Col.	DQin	Yes	-	Load use			RAM write with new mask
BWNM	1	1	0	0	—	Row	WM1		1	Col.	Sel.	Yes	-	Load use	-	Use	Block write with new mask
FWT	1	1	0	1	-	Row Row	WM1 WM1	_	0	-	-	Yes per row	-	Load use	-	-	Flash write with new mask
RW	1	1	1	, 0		Row		* E/L	0	Col.	DQin	_			_		Read/Write
		1	1	0			_	# E/L	1	Col.	Sel.						Block write with no mask
						<u> </u>										Use	DIOCK WITTE WITT TO TIOSK
LCR												_	_	-	-	Load	Load color reg.
BW LCR	1	1 1 1	1	1	-	Row Ref Ref	_ _		1 0 1	— — —	CLR. CLR.	_	_	_	_	Use Load	

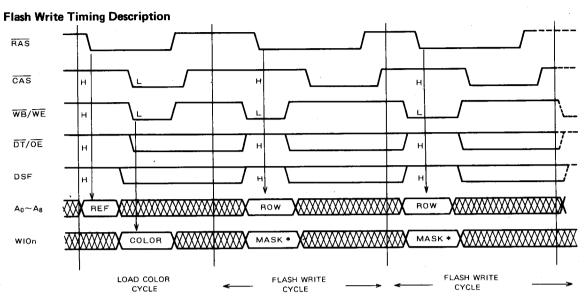
* E/L: Early write/Late write ** Ref: Refresh Address

FUNCTION

1. Flash Write

Utility: A high speed clear can be performed with flash write cycle.

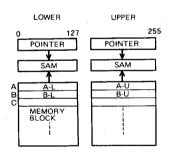
* Write a color (0 or 1) to an entire row in one RAM cycle.


 Before flash write cycle, the color data must be set into an internal color register at least once.

This Material Copyrighted By Its Respective Manufacturer

4-80

1048576-BIT DUAL-PORT DYNAMIC RAM

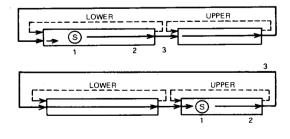


The mask must be asserted on each flash write cycle.

2. Split Register

Utility

- a. To simplify real time transfer timing (Fully asynchronous Serial Access)
- Split Serial Register into two halves To optimize the memory size to CRT.

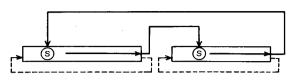


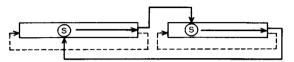
DISPLAY

Pointer Path

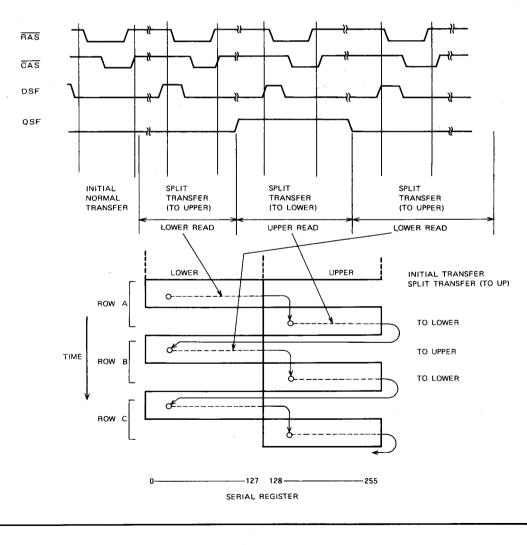
At Normal read transfer cycle

- 1. Transfer the data from RAM to SAM, and set the SAM start address among 256.
- 2. Start the Serial Read cycle.
- Serial Read from Lower to Upper/Upper to Lower. (The pointer of the Lower/Upper SAM will be automatically cleared to address 0/128 after over-carried)

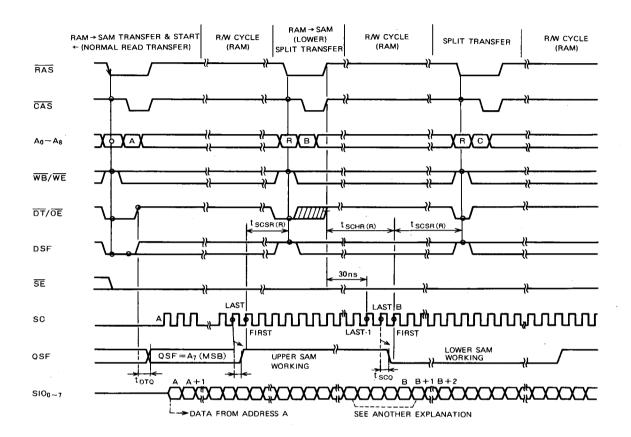

MITSUBISHI LSIs

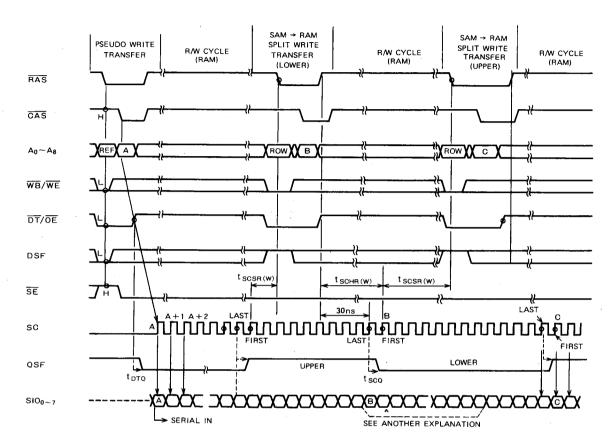

M5M482128J-8, -10, -12

1048576-BIT DUAL-PORT DYNAMIC RAM

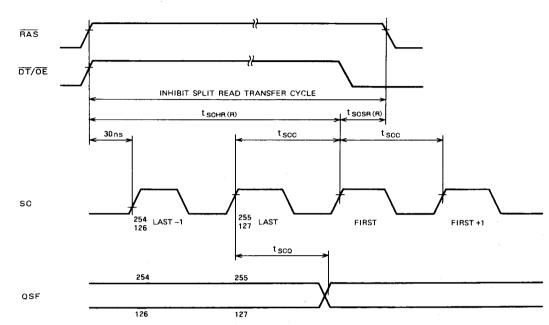

At Split and read transfer cycle

- 1. Normal transfer cycle must be performed prior to the split transfer cycle.
- 2. The data is transfered between the idle half of the SAM and the selected Row. At the same time the idle SAM's start address is set to give the next start address after the end of the busy SAM.
- 3. At the split transfer mode, data is transfered to the idle half of the SAM automatically. (Column A_7 is ignored.)
- 4. QSF indicates the busy SAM. (Lower Half SAM is busy: 0, Upper Half SAM is busy: 1)
- 5. Serial Read can be performed asynchronously during RAM cycle and Split transfer cycle.

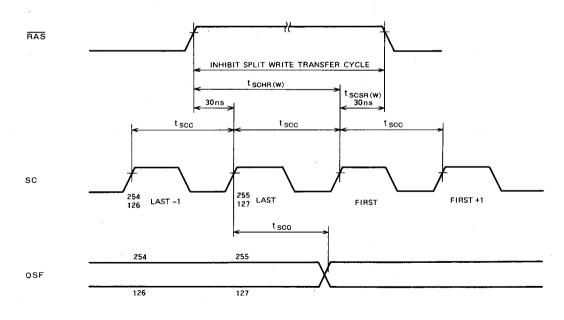



1048576-BIT DUAL-PORT DYNAMIC RAM

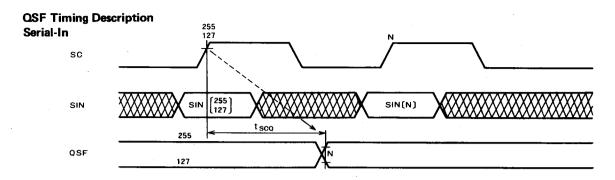
Split Read Transfer Timing Description


1048576-BIT DUAL-PORT DYNAMIC RAM

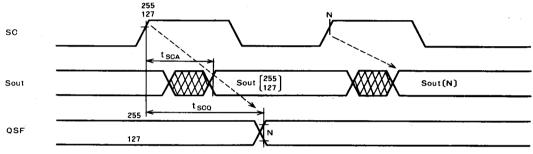
Split Write Transfer Timing Description



4-84


Split Read Transfer Inhibit Timing Description

Split Write Transfer Inhibit Timing Description



1048576-BIT DUAL-PORT DYNAMIC RAM

Serial-Out

Data transfer mode	SIO mode	SAM TAP	Data transfer	QSF set
Normal read transfer	Output	Col. (A0~A7)	RAM→SAM	A7
Normal write transfer	Input	Col. (Ag~A7)	SAM→RAM	Α ₇
Pseudo write transfer	Input	Col. (A0~A7)	_	Α7
Split read transfer	Not effect	Col. (A0~A6)	RAM-→SAM #1	
Split write transfer	Not effect	Col. (Ag~A6)	SAM→RAM +1	_

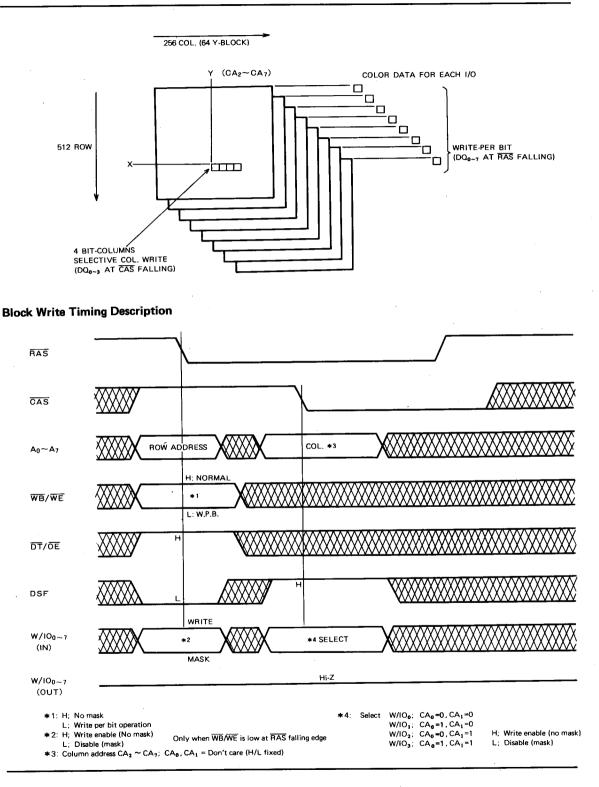
*1: If QSF = 0 then the upper half data ($128 \sim 255$) is transfered. If QSF = 1 then the lower half data ($0 \sim 127$) is transfered.

3. Block Write

4-86

In the Block Write cycle, Data from the Color Register can be written into 4 bit-columns (which Blocks are selected with column address $CA_2 \sim CA_7$) at one time. The DQ_{0-3} the input at \overline{CAS} falling edge enables a selective column write operation of the selected 4 bit-columns.

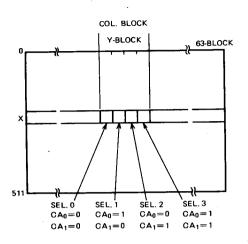
When \overline{WB}/WE is low at \overline{RAS} falling edge Write-per-bit operation applies to the writing of color data.


The Color Register must be loaded prior to the Block Write cycle.

Application

Block Write operation is useful for the partial-clearing or partial-painting of a bit-map display with same color data. With the selective-column writing of data, any of the 4 bit-columns can be masked, so allowing the boundary treatment in the same cycle.

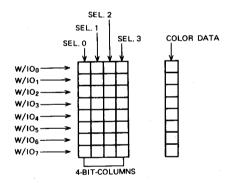
1048576-BIT DUAL-PORT DYNAMIC RAM



This Material Copyrighted By Its Respective Manufacturer

4-87

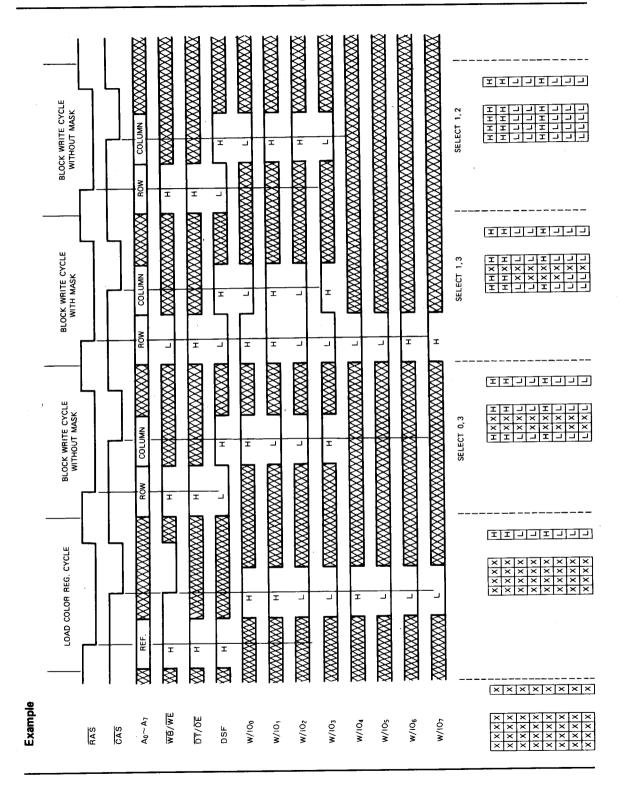
1048576-BIT DUAL-PORT DYNAMIC RAM



 A_0 , A_1 and W/IO_{4-7} at \overline{CAS} falling edge, are "don't care", but must be set H or L state.

Example of Block Write Operation

4-88


'X' indicates pre-state, 'H'; high level (1), 'L'; low level (0).

This Material Copyrighted By Its Respective Manufacturer

1048576-BIT DUAL-PORT DYNAMIC RAM

1048576-BIT DUAL-PORT DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-1~7	v
V ₁	Input voltage	With respect to V _{SS}	-1~7	v
Vo	Output voltage	· · · · · · · · · · · · · · · · · · ·	-1~7	v
1 ₀	Output current		50	mA
Pd	Power dissipation	Ta=25°C	1000	mW
Topr	Operating temperature		0~70	°C
Tstg	Storage temperature		-65~150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=0~70°C, unless otherwise noted) (Note 1)

Symbol	Parameter		Limits					
	rarameter	Min	Norm	Max	Unit			
Vcc	Supply voltage	4.5	5	5.5	v			
V _{SS}	Supply voltage	0	0	0	v			
VIH	High-level input	2.4		6.5	v			
VIL	Low-level input	-1.0		0.8	v			

Note 1: All voltage values are with respect to VSS.

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	T		Limits				
Symbol	Farameter	Test conditions	Min	Тур	Max	Unit		
Von (R)	High level output (RAM port)	$I_{OH(R)} = -1mA$	2.4		Vcc	v		
Vol (r)	Low level output (RAM port)	$I_{OL(R)} = 2.1 \text{mA}$	0		0.4	v		
VOL (R)	High level output (Serial I _O port)	$I_{OH(S)} = -1mA$	2.4		Vcc	v		
VOL(S)	Low level output (Serial Io port)	I _{OL(S)} =2.1mA	0		0.4	v		
loz	Off-state output current	Q Floating 0 <vout<v<sub>CC</vout<v<sub>	-10		10	μA		
4	Input current	0 <vin<v<sub>CC</vin<v<sub>	- 10		10	μA		

CAPACITANCE ($T_a = 25^{\circ}C$, f = 1MHz, $V_l = 25 mVmrs$)

Symbol	Pin name	Test conditions		Unit		
Symbol	() () () () () () () () () ()	Test conditions	Min	Тур	Max	Unit
CINO	RAS, CAS, WB/WE, SC, SE, DT/OE, DSF		-		8	pF
CINI	A ₀ ~A ₈	V _I =V _{SS} , f=1MHz, V _I =25mVrms			. 8	pF
Co	WIO0~WIO7, SIO0~SIO7, QSF				10	pF

4---90

ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V±10%, V_{SS}=0V, unless otherwise noted) (Note 3)

				Limits			
Symbol	Parameter		M5M482128-8	M5M482128-10	M5M482128-12	Unit	
oynibol	RAM port	SAM port	Max	Мах	M5M482128-12 Max 60 5 60 60 60 100 40 100 90 100		
	Random R/W cycle RAS/CAS cycling, tRC = tRC (min)	Standby (SC=VIL)	80	70	60	mA	
	Standby RAS = VIH, CAS = VIH, DOUT = HI-Z	(SC=V _{IL})	5	5	5	mA	
1002	\overline{RAS} only refresh cycle \overline{RAS} = cycling, \overline{CAS} = V _{IH} , t _{RC} = min	$(SC = V_{IL})$	80	70	60	mA	
1003	Page mode cycle $\overline{RAS} = V_{1L}$, $\overline{CAS} = cycling$, $t_{PC} = min$	(SC=VIL)	70	60	50	mA	
1005	CAS before RAS refresh tBC = tBC (min)	(SC=VIL)	80	70	60	mΑ	
1005	Data transfer cycle tRC = tRC (min)	(SC=V _{IL})	80	70	60	mA	
1007	Randam R/W cycle RAS/CAS cycling, tRc = tRc (min)	Active (t _{SCC} =min)	140	120	100	mA	
1008	Standby RAS = VIH, CAS = VIH, DOUT = Hi-Z	(t _{SCC} = min)	60	50	40	mA	
1009	RAS only refresh cycle RAS = cycling, CAS = V _{IH} , t _{RC} = min	(t _{SCC} = min)	140	120	100	mA	
1003	Page mode cycle RAS = V _{IL} , CAS = cycling, t _{RC} = min	(t _{SCC} =min)	130	110	90	mA	
LCC11	CAS before RAS refresh tRC = tRC min	(t _{SCC} =min)	140	120	100	mA	
	Data transfer cycle $t_{RC} = t_{RC}$ (min)	(t _{SCC} = min)	140	120	100	mA	

Note 3: ICC is obtained with the output open.

4: If V_{IH} ≥ V_{CC} × 0.9 and V_{IL} ≤ 0.6V. Then 1_{CC2} ≤ 2.0mA. (DSF, SE and SIO₀ ~ SIO₇ must be stable in high or low level.)

SWITCH CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted)

					Lin	nits			
Symbol	Parameter		M5M482128-8		M5M48	2128-10	M5M48	Unit	
Symbol			Min	Max	Min	Max	Min	Max	
tcac	Access time from CAS	(Note 6, 7)		25		30		40	ns
t _{RAC}	Access time from RAS	(Note 6, 8)		80		100		120	ns
t _{CAA}	Column address access time	(Note 6, 9)		40		50		60	ns
t _{CPA}	Access time from CAS precharge	(Note 6, 10)		45		55		65	ns
toEA	Access time from OE	(Note 6)		25		30		35	ns
t _{CLZ}	Output low impedance time from CAS low	(Note 6)	5		5		5		ns
toFF	Output disable time after CAS high	(Note 11)	0	20	0	25	0	30	ns
t _{OEZ}	Output disable time after OE high	(Note 11)	0	20	0	25	0	30	ns
t _{SCA}	Access time from SC high	(Note 6-S)		30		30		40	ns
t _{SOA}	Access time from SE low	(Note 6-S)	0	25	0	25	0	35	ns
tsoz	Output disable time after SE high	(Note 11)	0	20	0	20	0	25	ns
t _{SOH}	Serial outut hold time after SC high		5		5		5		ns
t _{S00}	Delay time SE low to serial setup	(Note 6-S)	15		15		25		ns

Note 5: An initial pause of 500 µs is required after power-up followed by any 8 RAS or RAS/CAS cycles and 8 SC cycles before proper device operation is achieved. Note that RAS may be cycled during the initial pause.

And any 8 RAS or RAS/CAS cycles are required after prolonged periods of RAS inactivity before proper device operation is achieved. 6: Measured with a load circuit equivalent to 1TTL loads and 50pF.

6-S: Measured with a load circuit equivalent to 1TTL loads and 30pF.

7: Assume that $t_{RCD}(max) \leq t_{RCD}$ and $t_{RAD}(max) \geq t_{RAD}$.

8: Assume that $t_{RCD} \leq t_{RCD}(max)$ and $t_{RAD} \leq t_{RAD}(max)$.

9: Assume that $t_{RCD} - t_{RAD} \leq t_{CAA}(max) - t_{CAC}(max)$ and $t_{RCD} \geq t_{RCD}(max)$.

Assume that t_{CP} ≤ t_{CP(max}) and t_{ASC} ≥ t_{ASC(max}).
Assume that t_{CP} ≤ t_{CP(max}) and t_{ASC} ≥ t_{ASC(max}).
t_{OFF(max}), t_{SOZ(max}) and t_{OEZ(max}) define the time at which the output achieves the high impedance state (|I_{out}| ≤ 10µA) and are not reference to V_{OH(min}) or V_{OL(max}).

Read, Write, Refresh, Read/Write Transfer, Flash Write, Load Color and Fast Page Cycles

				Lii	mits			ļ
Symbol	Parameter	M5M	482128-8	M5M48	82128-10	M5M48	32128-12	Unit
		Min	Max	Min	Max	Min	Max	
t _{REF}	Refresh cycle time		8		8		8	ms
t _{RP}	RAS high pulse width	70		80		90		ns
t _{RCD}	Delay time RAS low to CAS low (Note 1	I) 30	55	30	70	30	85	ns
t _{CRP}	Delay time CAS high to RAS low (Note 1	5) 10		10		10		ns
t _{CPN}	CAS high pulse width (Note 1	5) 35		35		35		ns
t _{RAD}	Column address delay time from RAS (Note 1	') 20	40	20	50	20	60	ns
t _{ASR}	Row address setup time before RAS	0		0	-	0		ns
tASC	Column address setup time before CAS (Note 1	3) 5	10	5	15	5	20	ns
t _{RAH}	Row address hold time after RAS	15		15		15		ns
t _{CAH}	Column address hold time after CAS low	20		20		20		กร
t _T	Transition time (Note 1)) 3	35	3	35	3	35	ns
twsR	WB/WE setup time before RAS	0		0		0		ns
t _{RWH}	WB/WE hold time after RAS	15		15		15		ns
t _{dtrs}	DT/OE setup time before RAS	0		0		0		ns
t _{DTRH}	DT/OE hold time after RAS	15		15		15		ns
t _{FSR}	DSF setup time before RAS	0		0		0		ns
t _{RFH}	DSF hold time after RAS	15		15		15		ns
t _{FSC}	DSF setup time before CAS	0		0		0		ns
t _{CFH}	DSF hold time after CAS	20	-	20	[20		ns
tws	Write mask setup time before RAS	0		0		0		ns
t _{wн}	Write mask hold time after RAS	15		15	1	15		ns

Note 12: The timing requirements are assumed t_T = 5ns.

13: VIH (min) and VIL (max) are reference levels for measuring timing of input signals.

14: tRCD(max) is specified as a reference point only.

If tRCD is less than tRCD (max), access time is tRAC.

If t_{RCD} is greater than t_{RCD} into a line is defined as t_{CAC} and t_{CAA} as shown in notes 7, 9. 15: t_{CRP} requirement is applicable for all RAS/CAS cycles.

16: tCPN(min) is specified as tCPN(min) = tRCD(min) + tCRP(min) except for tCP of fast page mode cycle.

17: tRAD(max) is specified as a reference point only.

If $t_{RAD} \ge t_{RAD}(max)$, access time is assumed by t_{CAA} for read cycle.

18: tASC(max) is specified as a reference point only of address access time.

19: tT is measured between VIH (min) and VIL (max).

Read and Refresh Cycles

				Lin	nits			
Symbol	Parameter	M5M482128-8		M5M48	2128-10	M5M48	2128-12	Unit
		Max	Min	Min	Max	Min	Max	
t _{BC}	Read cycle time	160		190		220		ns
tRAS	RAS low pulse width	80	10000	100	10000	120	10000	ns
t _{CAS}	CAS low pulse width	25	10000	30	10000	35	10000	ns
t _{csH}	CAS hold time after RAS	80		100		120		ns
t _{RSH}	RAS hold time after CAS	25		30		35		ns
tRCS	Read setup time before CAS	0		0		0		ns
t _{RCH}	Read hold time after CAS high (Note 20)	0		0		0		ns
t _{RRH}	Read hold time after RAS high (Note 20)	10		10		10		ns
tRAL	Column address to RAS setup time	40		50		60	ļ	ns
tRPC	Precharge to CAS active time	0		0		0	ļ	ns
th (CLOE)	OE hold time after CAS low	25		30		35		ns
th (RLOE)	OE hold time after RAS low	80		100		120	ļ	ns
TDOEL	Delay time date to OE low	0		0		0		ns
t _{OEHD}	Delay time OE high to Data	15		20		25	ļ	ns
th (OECH)	\overline{CAS} hold time after \overline{OE} low	25		30	L	35		ns
th (OERH)	RAS hold time after OE low	25		30		35		กร

Note 20: Either tRCH or tRRH must be satisfied for a read cycle.

Write Cycle (Eary Write and Delayed Write)

				Lin	nits				
Symbol	Parameter	M5M4	32128-8	M5M482128-10		M5M482128-12		Unit	
·		Min	Max	Min	Max	Min	Max		
twc	Write cycle time	160		190		220		ns	
t _{RAS}	RAS low pulse width	80	10000	100	10000	120	10000	ns	
tCAS	CAS low pulse width	25	10000	30	10000	35	10000	ns	
t _{CSH}	CAS hold time after RAS	80		100		120		ns	
tash	RAS hold time after CAS	25		30		35		ns	
twcs	Write setup time before CAS (Note 22)	0		0		0		ns	
twch	Write hold time after CAS	15		20		25		ns	
tcwL	CAS hold time after write	20		25		30		ns	
TRWL	RAS hold time after write	20		25		30		ns	
twp	Write pulse width	15		20		25		ns	
t _{DSC}	Data setup time before CAS	0		0		0		ns	
t _{DSW}	Data setup time before write	0		0		0		ns	
t DHC	Data hold time after CAS	25		30		35		ns	
t _{DHW}	Data hold time after write	20		25		30	L	ns	
tOEHD	Delay time OE high to data	25		30		35		ns	
th(woe)	OE hold time after write	20		25		30		ns	

			Limits				1	
Symbol	Parameter	M5M4	82128-8	M5M482128-10		M5M482128-12		Unit
		Min	Max	Min	Max	Min	Max	
tRWC	Read write/read modify write cycle time (Note 21)	205		245		285		ns
tRAS	RAS low pulse width	125	10000	155	10000	185	10000	ns
t _{CAS}	CAS low pulse width	70.	10000	85	10000	100	10000	ns
t _{CSH}	CAS hold time after RAS	125		155		185		ns
t _{RSH}	RAS hold time after CAS	70		85		100		ns
t _{RCS}	Read setup time before CAS	0		0		0		ns
t _{CWD}	Delay time. CAS to write (Note 22)	45		55		65		ns
t _{RWD}	Delay time. RAS to write (Note 22)	100		125		150		ns
tcw∟	CAS hold time after write	20		25		30	· · ·	ns
TRWL	RAS hold time after write	20		25		30		កទ
twp	Write pulse width	15		20		25		ns
t _{DSW}	Data setup time before write	0		0		0		ns
t _{DHW}	Data hold time after write	20		25		30		ns
tAWD	Delay time address to write (Note 22)	60		75		90		ns
th (CLOE)	OE hold time after CAS	25		30		35		ns
th(RLOE)	OE hold time after RAS	80		100		120		ns
t DOEL	Delay time. Data to OE low	0		0		0	• -	ns
t _{DEHD}	Delay time. OE high to data	15	· · · · ·	20		25		ns
th (WOE)	OE hold time after write low	15		20		25		ns

Note 21: tRWC is specified as tRWC(min) = tRAC(max) + tOEHD(min) + tRWL(min) + tRP(min) + 4tr.

22: twcs, tcwp, tRwp and tAwp are specified as reference points only.

 $If twcs \ge twcs(min) \text{ the cycle is an early write cycle and the WIO pins will remain high impedance throughout the entire cycle. If tcwcb \ge tcWc(min), tewcb \ge tawcb (min) and tawcb \ge tawcb (min), the cycle is a read-modify-write cycle and the WIO will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the WIO (at access time and until CAS or OE goes back to V_H) is indeterminate.$

Fast-Page Mode Cycle (Read, Early Write, Read-Write, Read-Modify-Write Cycle)

Symbol tpc tras tcas			/ Limits						
	Parameter	M5M4	82128-8	M5M48	2128-10	M5M4	82128-12	Unit	
		Min	Max	Min	Max	Min	82128-12 Max 100 k 10000 25		
t _{PC}	Read, write cycle time	50		60		70		ns	
t _{RWPC}	Read, write/read modify write cycle time	100		115		135		ns	
t RAS	RAS low pulse width for read write cycle	135	100 k	160	100 k	190	100 k	ns	
tCAS	CAS low pulse width for read cycle	25	10000	30	10000	35	10000	ns	
t _{CP}	CAS high pulse width (Note 23)	10	15	10	· 20	15	25	ns	
t _{RSH}	RAS hold time after CAS	25	<u> </u>	· 30		35		ns	

Note 23: $t_{CP(max)}$ is specified as a reference point only. If $t_{CP(max)} \leq t_{CP}$, access time is assumed by t_{CAC} .

CAS before RAS Refresh Cycle (Note 24)

Symbol			Limits						
	Parameter	M5M4	82128-8	M5M48	M5M482128-10		2128-12	Unit	
		Min	Max	Min	Max	Min	Max	-	
t _{CSR}	CAS setup time for CAS before RAS refresh	10		10		10		ns	
t _{CHR}	CAS hold time for CAS before RAS refresh	30		35		40	1	ns	
t _{RPC}	Precharge to CAS active time	0		0		0	! -	ns	

Note 24: Eight of more CAS before RAS cycl is nesessary for proper operation of CAS before RAS refresh mode.

4--94

Normal Read/Write/Pseudo Write Transfer

		Limits						
Symbol	Parameter	M 5M 48	2128-8	M5M482128-10		M5M482128-12		Unit
0,		Min	Max	Min	Max	Min	Max	
t _{RDH} *	DT/OE low hold time after RAS	70		80		90		ns
t _{RSD}	Delay time RAS to SC	90		105		120		ns
tASD	Delay time address to SC	55		60		65		ns
tcsp	Delay time CAS to SC	50		55		60		ns
t SDH	SC hold time after DT	15		15		20		ns
tRO	Delay time RAS to QSF		105		125		140	ns
tAO	Delay time address to QSF		70		80		85	ns
t _{co}	Delay time CAS to QSF		75		85		90	ns
t _{DTQ}	Delay time DT to QSF		30		35		40	ns
tDTSR	DT high setup time before RAS high (Note 25)	0		0		0		ns
tDTW	DT high pulse width	20		25		30		ns
tes	SE setup time before RAS low	0		0		0		ns
t _{EH}	SE hold time after RAS low	15		15		15	L	ns
t _{SZR}	RAS low to serial input delay time (Serial-in → Serial-out)	20		20		20		ns
t _{RLZ}	RAS to serial output delay time (Serial-in → Serial-out)	25		25		25		ns
tsRS	SC setup time before RAS low	30		35		40		ns
t _{SDZ}	Serial output turn-off delay from RAS (Serial-out → Serial-in)	10	50	10	50	10	60	ns
t _{SDP}	RAS to serial input delay time (Serial-out → Serial-in)	50		50		60		ns

★ If t_{RCD} ≥ 70ns, t_{RDH}(min) is 15ns.

RAS Control Read/Write/Pseudo Write Transfer

	Parameter		Limits						
Symbol tRDTD tSRH tDTW tRHQ tSZSR			M5M482128-8		M5M48	2128-10	M5M48	2128-12	Unit
			Min	Max	Min	Max	Min	182128-12 Max 40	
tвото	DT hold time after RAS high (Not	e 25)	0		0		0		ns
	SC hold time after RAS= high		20		20		25		ns
	DT high pulse width		20		25		30		ns
	Delay time RAS high to QSF			30		30		40	กร
	Delay time data to RAS high		0		0		0		ns
t _{RHZ}	RAS high to serial output delay time (Serial-in \rightarrow Serial-out)		5		5		5		ns

Note 25: $t_{RDTD(min)}$ and $t_{DTSR(min)}$ are specified as a reference point only. If $t_{RDTD} \ge t_{RDTD(min)}$, the cycle is RAS control transfer cycle.

.

Split Read/Write Transfer Cycle

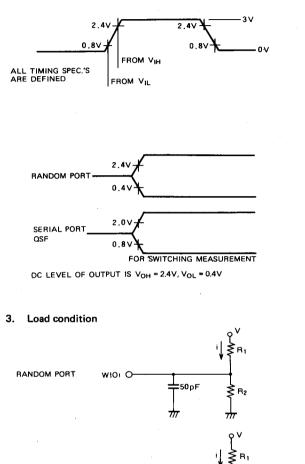
Symbol			Limits					
	Parameter	M5M4	M5M482128-8		M5M482128-10		2128-12	Unit
		Min	Max	Min	Max	Min	Max	
t SCSR (W)	SC setup time to RAS at split write transfer cycle	30		30		40		ns
t SOHR (W)	SC hold time from RAS at split write transfer cycle	tscc +30		tscc + 30		tscc +40		ns
t _{SCSR (R)}	SC setup time to RAS at split read transfer cycle	0		0		0		ns
t _{SCHR (R)}	SC hold time from RAS at split read transfer cycle	2tsoc +30		2tscc +30	•	2tsoc +40		ns

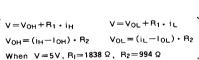
Serial Input/Serial Output

			Limits					
Symbol	Parameter	M5M4	82128-8	M5M482128-10		M5M482128-12		Unit
		* Min	Мах	Min	Max	Min	Max	
t _{SSC(R)}	SC clock cycte time (Serial Read)	30		30	1	40		ns
t scc(w)	SC clock cycte time (Serial Write)	30		40		40		ns
t _{SCH}	SC high pulse width	10		10	-	15		ns
t _{SCL}	SC low pulse width	. 10		10		15	1 1	ns
t _{sop}	SE high pulse width	25		25		35		ns
t _{SOE}	SE low pulse width	25		25	1	35	<u> </u> − <u> </u>	ns
t _{SIM}	Serial input data hold time after SC high	20		20		30		ns
tsis	Serial input data setup time before SC high	0		0		0		 ns
t _{swin}	SE disable hold time after SC high	15		15		20		ns
t _{swis}	SE disable setup time before SC high	10	~	10		10		ns
t _{swn}	SE enable hold time after SC high •	15		15		20		ns
t _{sws}	SE enable setup time before SC high	10	-	10		10		ns
tscq	Delay time SC to QSF		30		30		40	ns

Read Time Read Transfer

4-96


	•	Limits							
Symbol	Parameter		82128-8	M5M48	M5M482128-10		M5M482128-12		
		Min	Max	Min	Max	Min	Max		
t _{RDH}	DT hold time after RAS	70		85		100		ns	
t _{CDH}	DT hold time after CAS	30		35	1	. 40		ns	
t ADH	DT hold time after address	35		40		45		ns	
t _{SDD}	Delay time SC to DT	20	1	20		25		ns	
t _{SDH}	SC hold time after DT	30		30	1	35	† †	ns	
t _{DTQ}	Delay time DT to QSF (Note 25)		30		30		40	пз	
t _{RDTD}	DT hold time after RAS high	0		0		0		ns	
t _{SRD}	Delay time SC to RAS high (Note 25)	15		15	1	20	1	ns	
t _{SRH}	SC hold time after RAS high (Note 25)	35		35		40		ns	
t _{RHQ}	Delay time RAS high to QSF . (Note 25)		30		30		40	n s	


This Material Copyrighted By Its Respective Manufacturer

Switching Measurement Condition

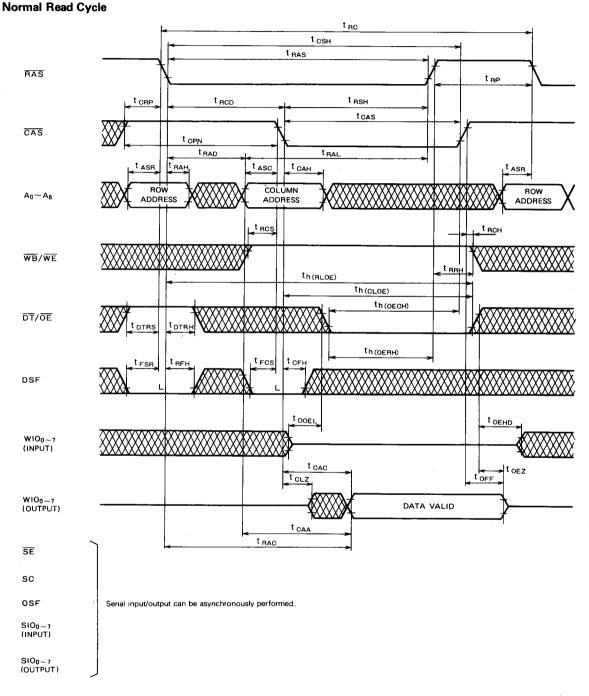
1. Input reference point

SERIAL PORT

⊥_____30_pF

₹R2

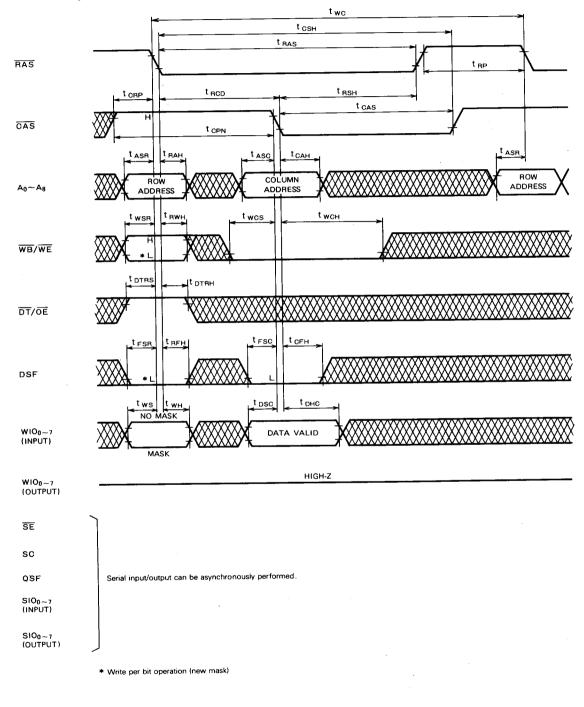
SIOI O


$$R_1 = \frac{V_{OH}(V - V_{OL}) - V_{OL}(V - V_{OH})}{V_{OH} \cdot I_{OL} - V_{OL} \cdot I_{OH}}$$

$$R_2 = \frac{V_{OH} \cdot R_1}{(V - V_{OH}) - I_{OH} \cdot R_1}$$

1048576-BIT DUAL-PORT DYNAMIC RAM

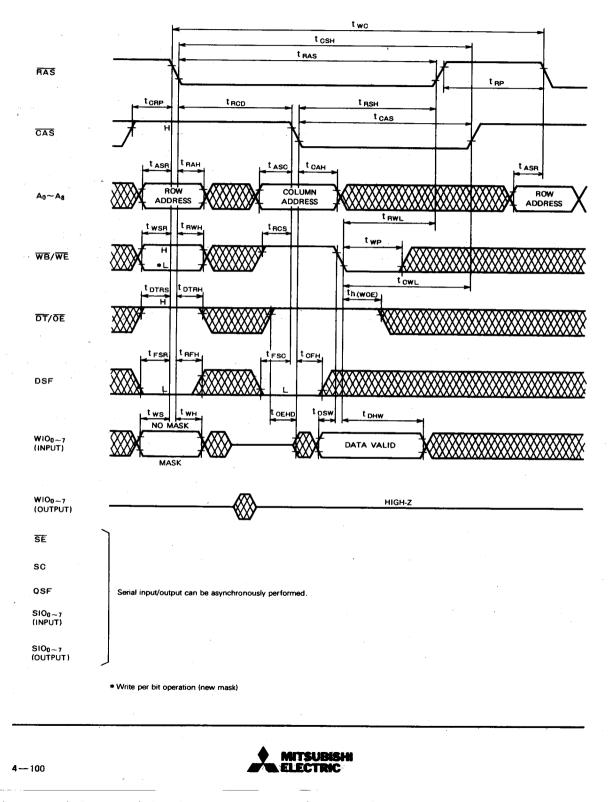
TIMING DIAGRAMS

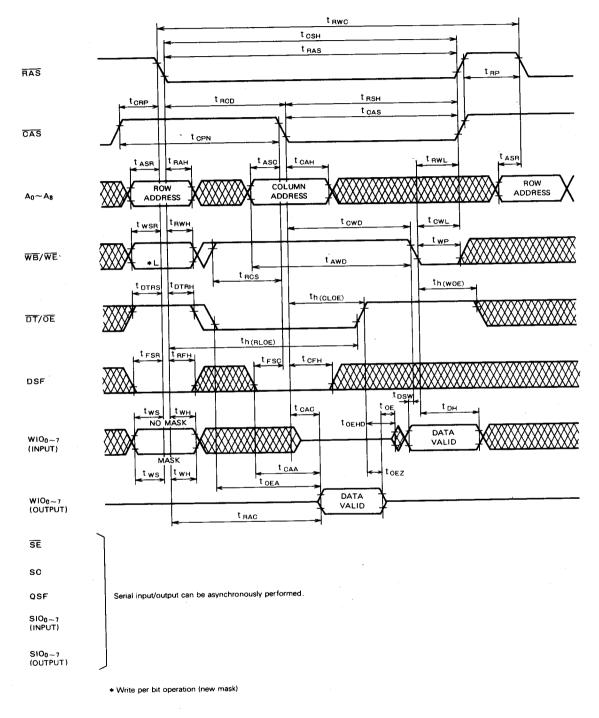

4-98

MITSUBISHI LSIs

M5M482128J-8, -10, -12

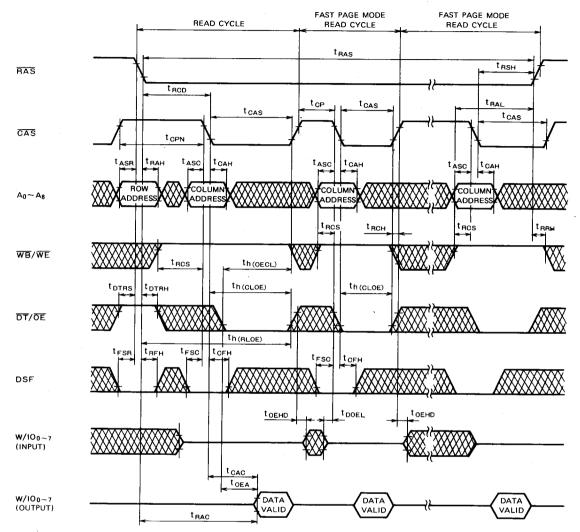
1048576-BIT DUAL-PORT DYNAMIC RAM

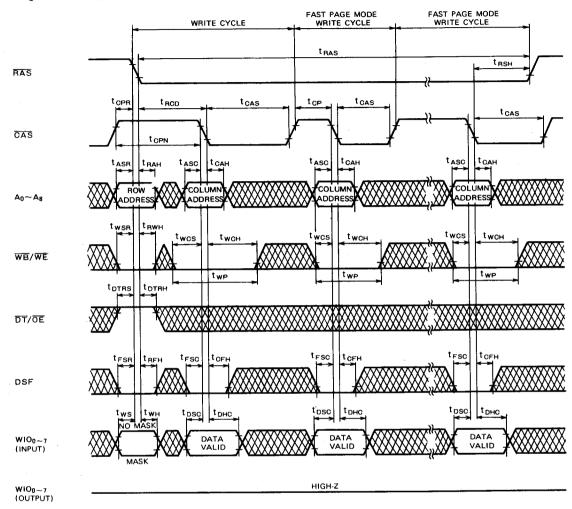

Normal Write Cycle (Early Write)


1048576-BIT DUAL-PORT DYNAMIC RAM

Normal Write Cycle (Late Write)

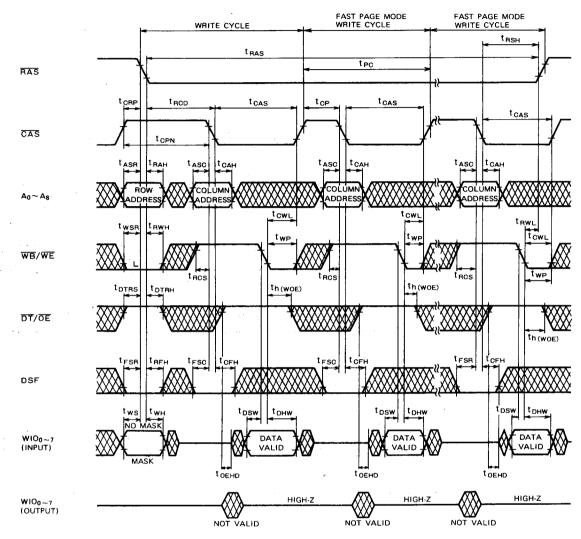
This Material Copyrighted By Its Respective Manufacturer


Normal Read Modify Write Cycle


1048576-BIT DUAL-PORT DYNAMIC RAM

Fast Page Mode Read Cycle

This Material Copyrighted By Its Respective Manufacturer



Fast Page Mode Early Write Cycle with New Mask

Serial input/output can be asynchronously performed. Write per bit operation mask is effective during the continuous page mode cycle.

1048576-BIT DUAL-PORT DYNAMIC RAM

Fast Page Mode Late Write with New Mask

Serial input/output can be asynchronously performed. Write per bit operation mask is effective during the continuous page mode cycle.

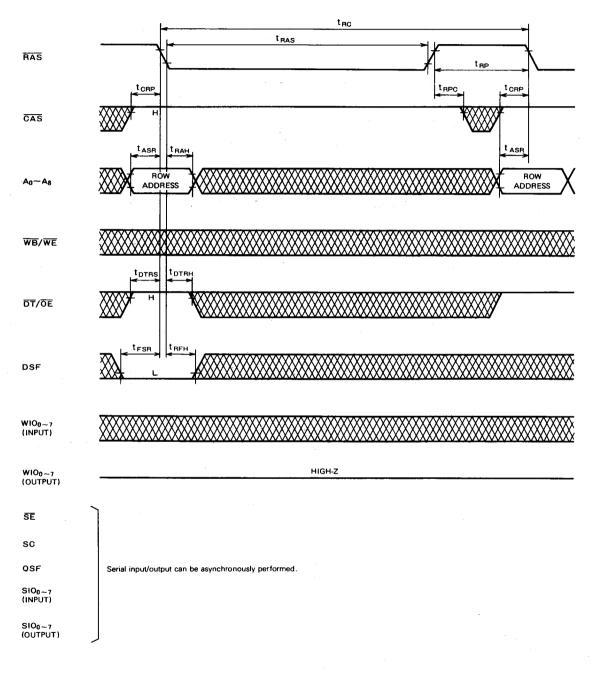
M5M482128J-8, -10, -12

TELEBRACE AND A STATE 1048576-BIT DUAL-PORT DYNAMIC RAM

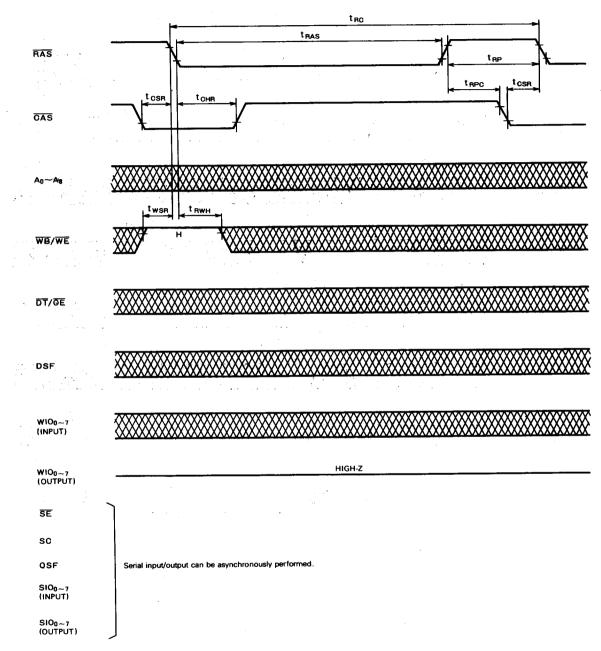
FAST PAGE READ-MODIFY-WRITE-CYCLE FAST PAGE WRITE-CYCLE READ-MODIFY-WRITE-CYCLE tRSH ters RAS t_{RWPC} t CRP t RCD t CAS tcas tCAS CAS t _{CPN} tcp t ASC tcy t_{RAH} t _{CAH} 198 COLUMN COLUM co ROW ADDRES An~As ADDRES ADDRES tow tow t_{RCS} th(CLOE) th (OLOE) tRGS twr WB/WE tCAA th (CLOE) RCS t CAA t_{CAA} t. ٩C t RAC t CAC toE/ t OEA ۰. DT/OE th (WOE) th (WOE) th (WOE) t DTRS DTRH toend t OEHD OFHD tFSC t_{FSC} t, I CEH DSF tosw t DHM tosv t_{DHW} tosw tD ws NO MASK DATA DATA DATA W100-7 VALIE VALID (INPUT) VALID MASK toez toez toez HIGH-Z HIGH-Z WIO0~7 (OUTPUT) VALID DATA VALID DATA VALID DATA

Fast Page Mode Read-Write, Read-Modify-Write-Cycle

1 1


1. 我们们最高兴的好的。

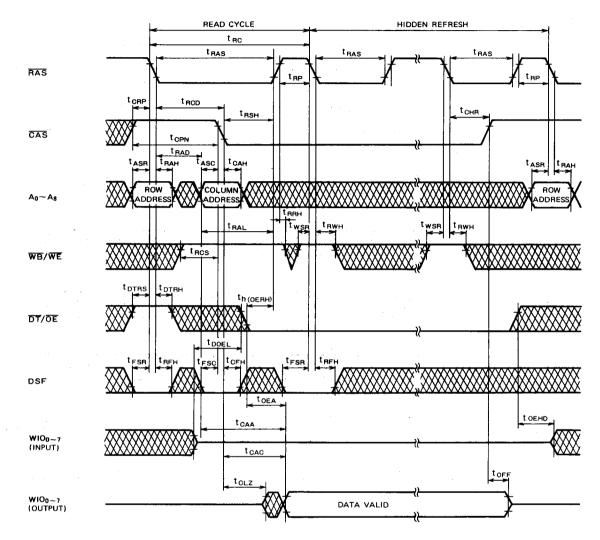
Serial input/output can be asynchronously performed. Write per bit operation mask is effective during the continuous page mode cycle.


1048576-BIT DUAL-PORT DYNAMIC RAM

RAS only Refresh Cycle

1048576-BIT DUAL-PORT DYNAMIC RAM

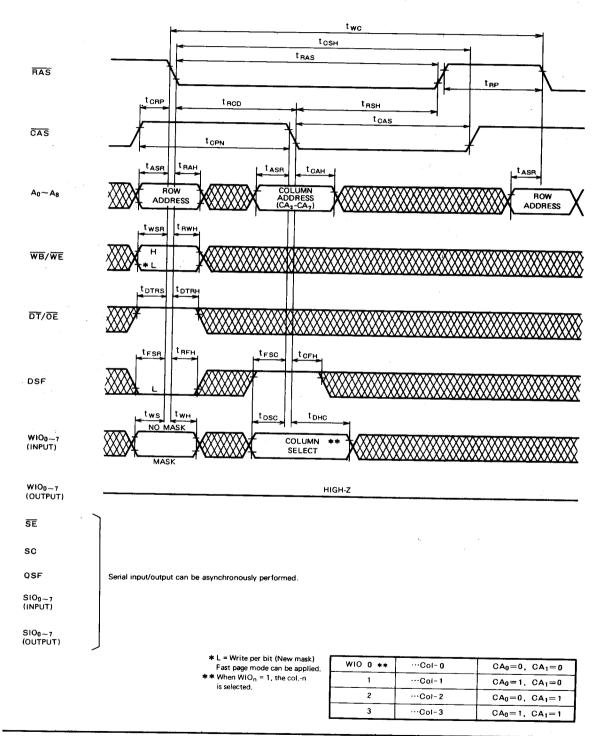
CAS before RAS Refresh Cycle


1.1. 1.5 2. 1.

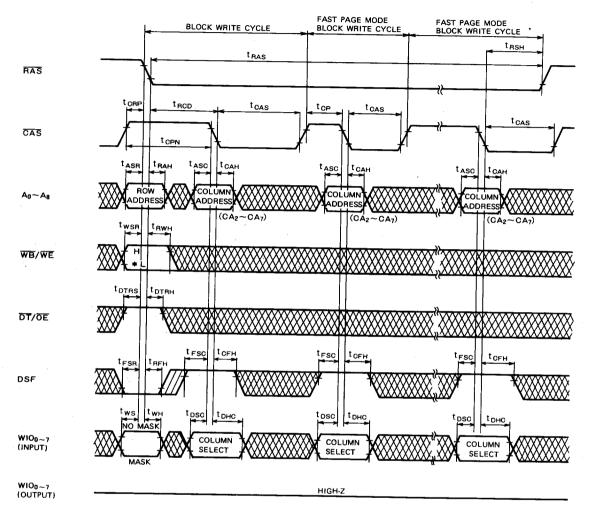
1.1

This Material Copyrighted By Its Respective Manufacturer

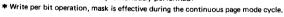
4-107


Hidden Refresh Cycle (Automatic Refresh)

Serial input/output can be asynchronously performed.


1048576-BIT DUAL-PORT DYNAMIC RAM

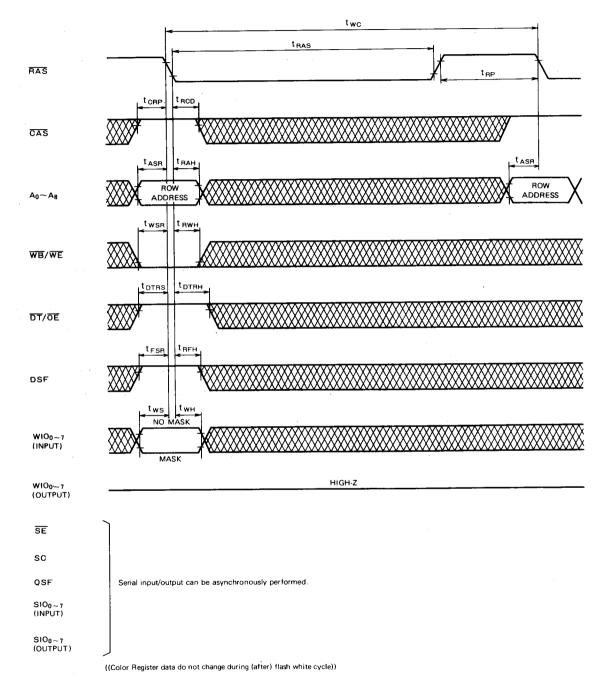
Block Write Cycle

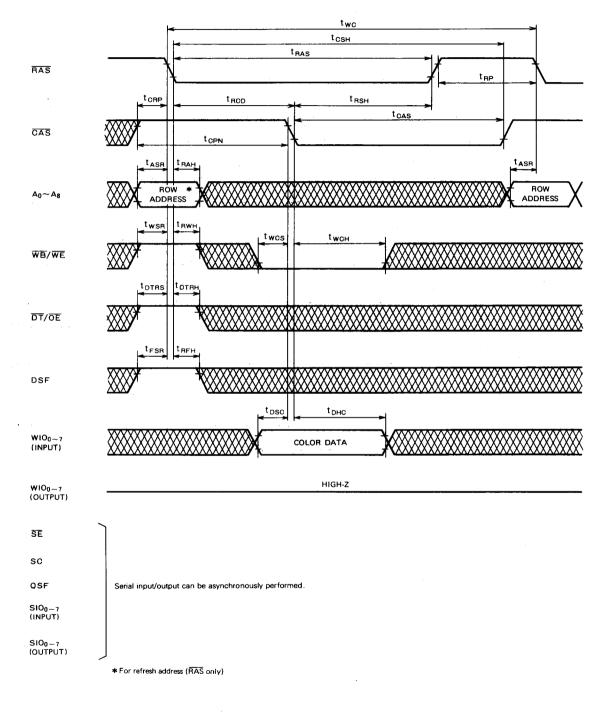


1048576-BIT DUAL-PORT DYNAMIC RAM

Fast Page Mode Block Write Cycle

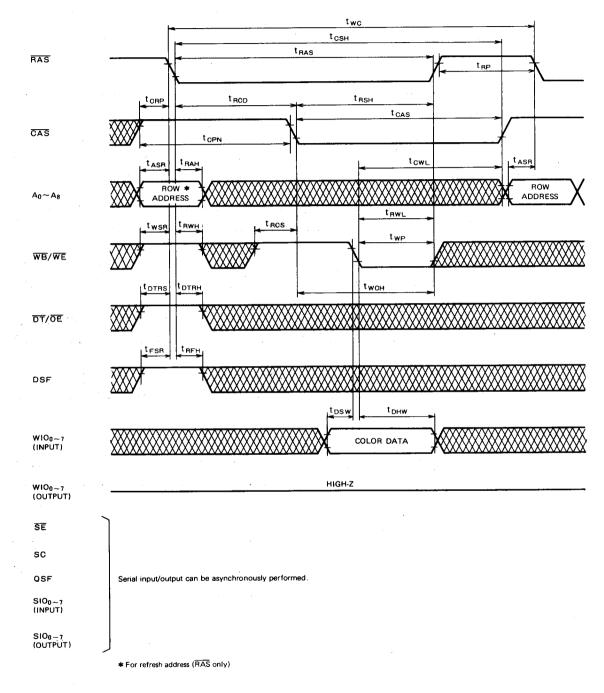
Serial input/output can be asynchronously performed.

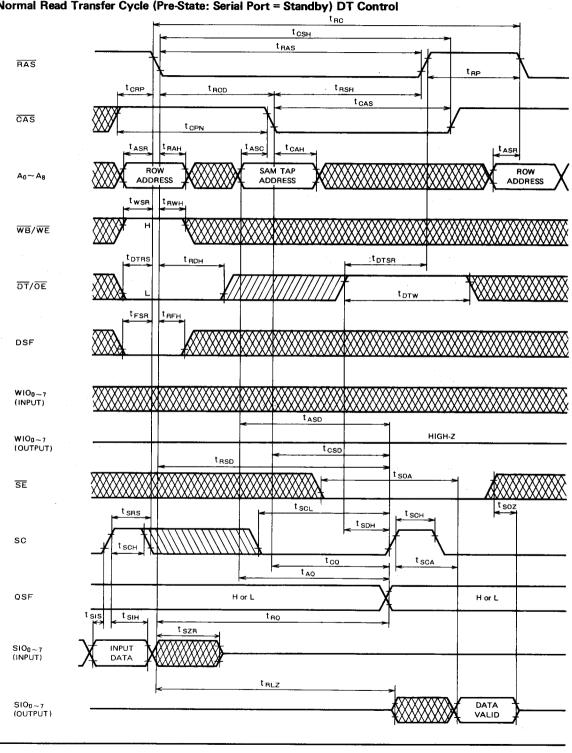



This Material Copyrighted By Its Respective Manufacturer

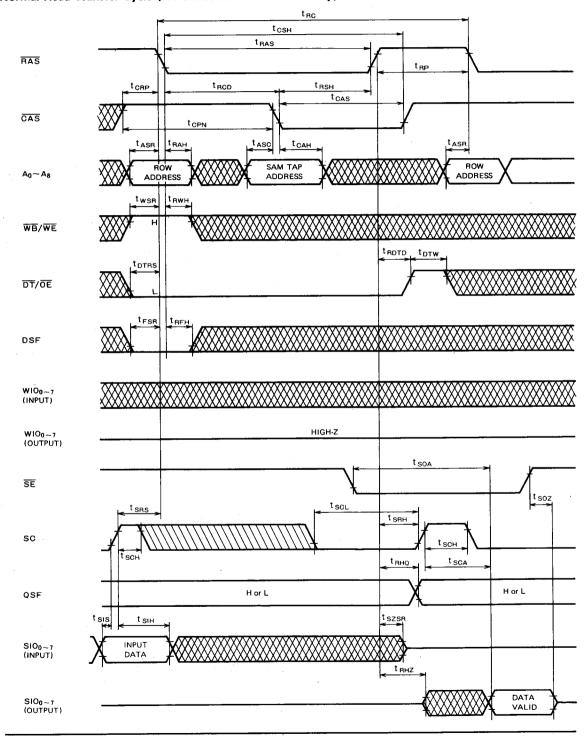
4---110

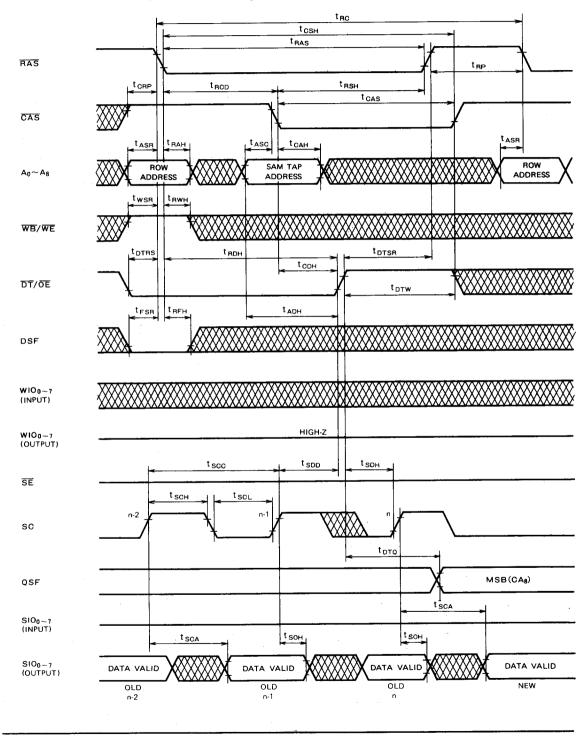
Flash Write with Mask

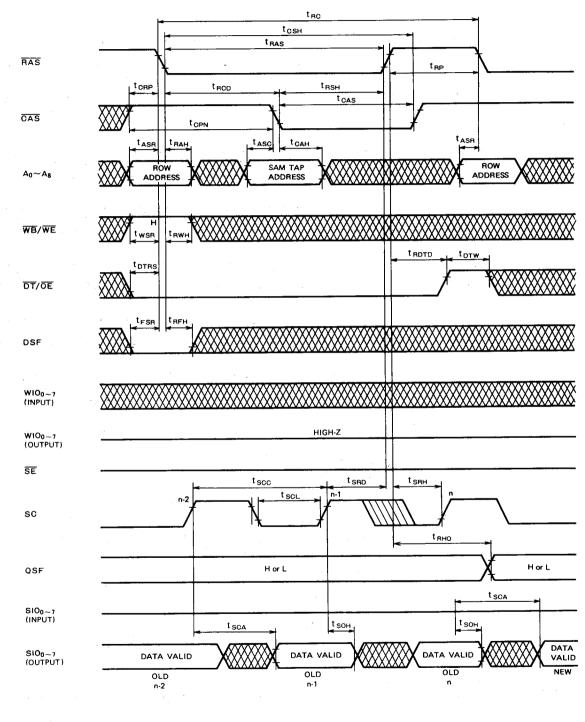


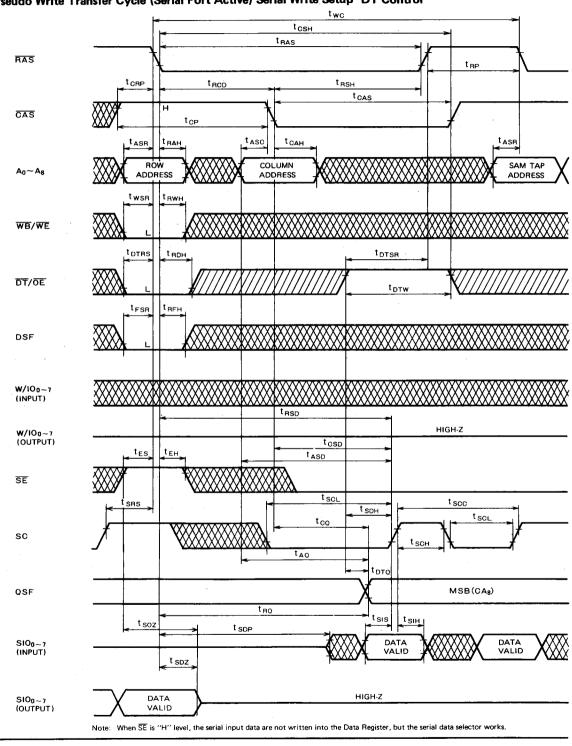

Load Color Register Cycle (Early Write, CAS Latch Data)

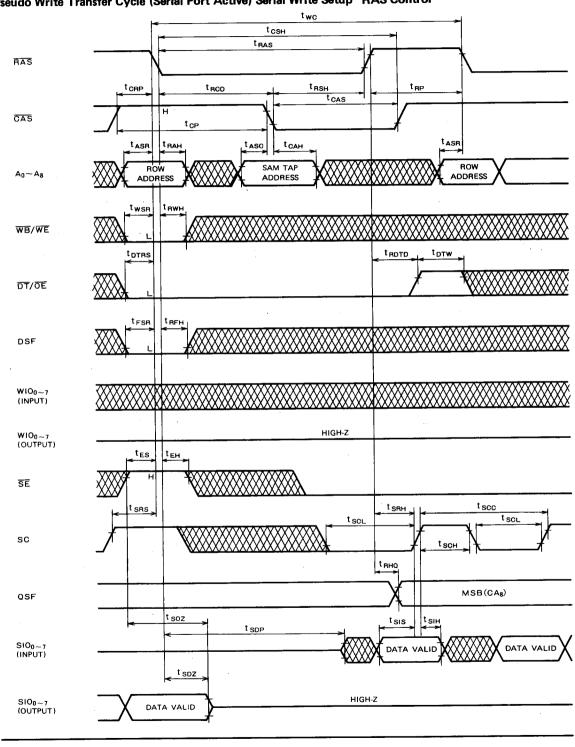
Load Color Register Cycle (Late Write, Write Latch)



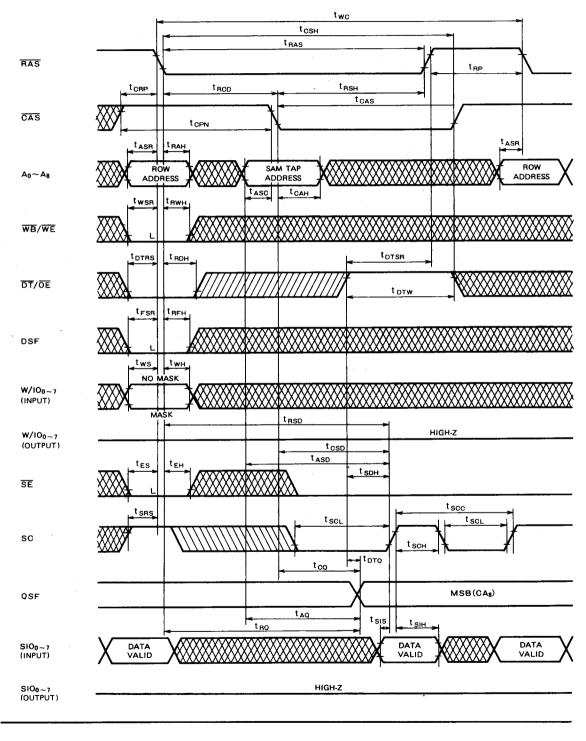

Normal Read Transfer Cycle (Pre-State: Serial Port = Standby) DT Control


Normal Read Transfer Cycle (Pre-State: Serial Port = Standby) RAS Control

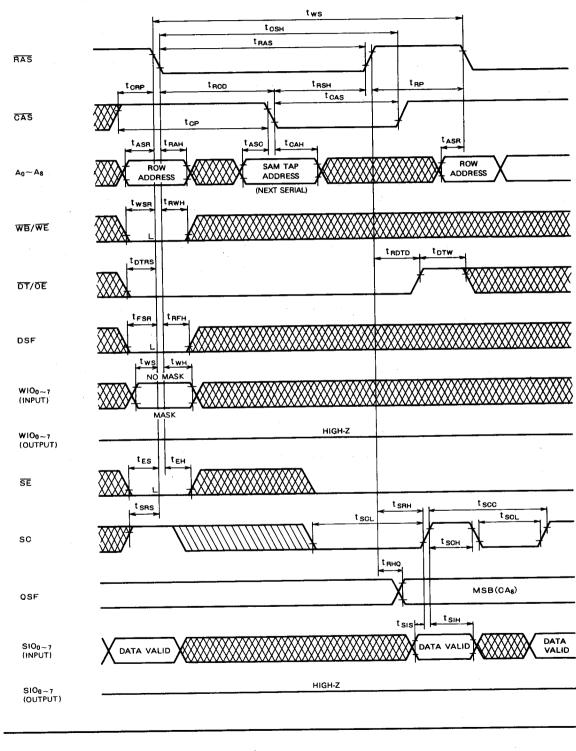

Read-Time Read Transfer Cycle (To Active Register: Serial Port Active) DT Control



Real-Time Read Transfer Cycle (To Active Register: Serial Port Active) RAS Control

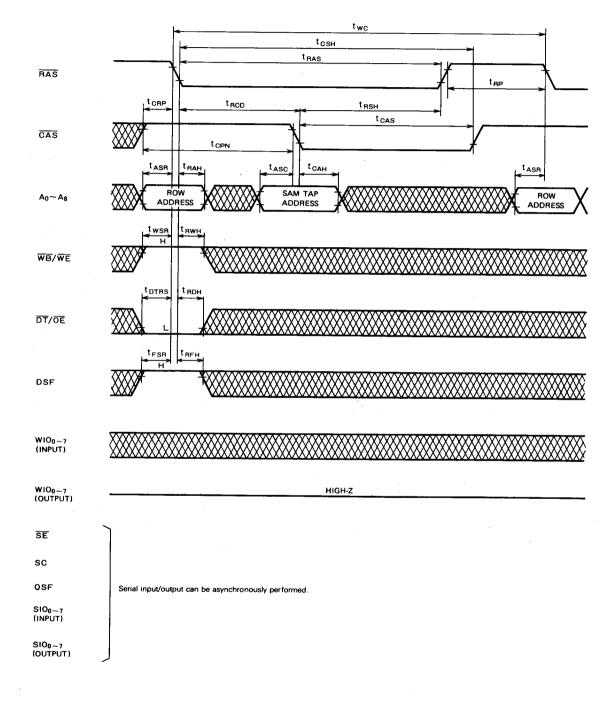


Pseudo Write Transfer Cycle (Serial Port Active) Serial Write Setup DT Control



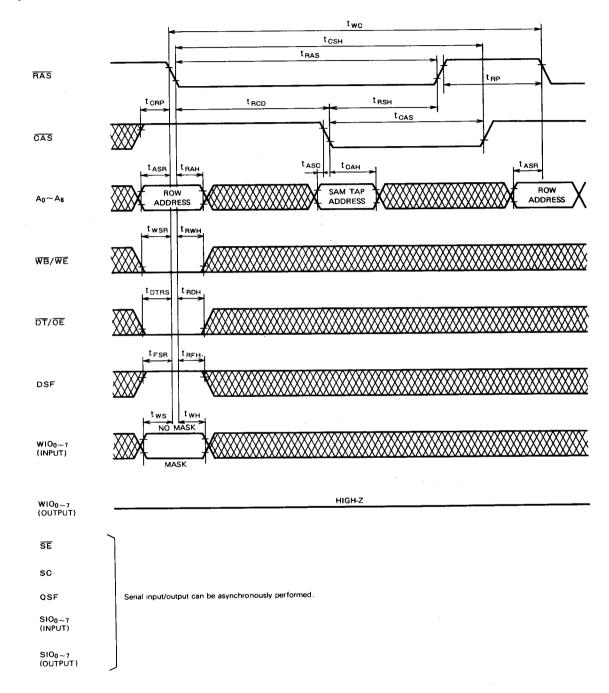
Pseudo Write Transfer Cycle (Serial Port Active) Serial Write Setup RAS Control

Write Transfer Cycle (Serial Port = Write Cycle) with New Mask DT Control

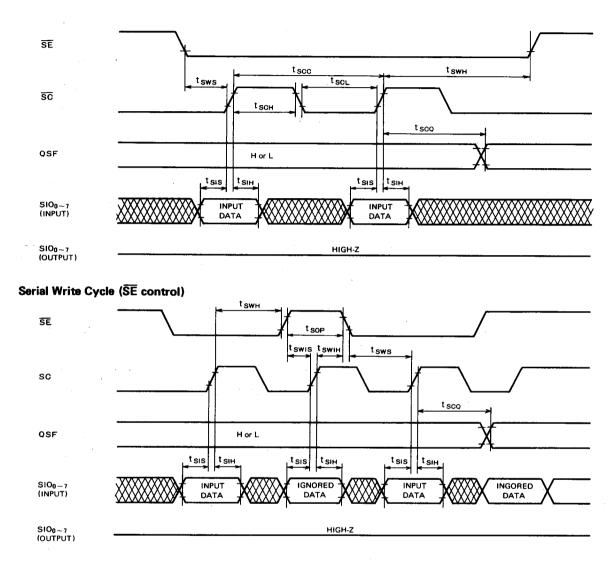


Write Transfer Cycle (Serial Port = Write Cycle) with New Mask RAS Control

MITSUBISHI LSIS M5M482128J-8, -10, -12

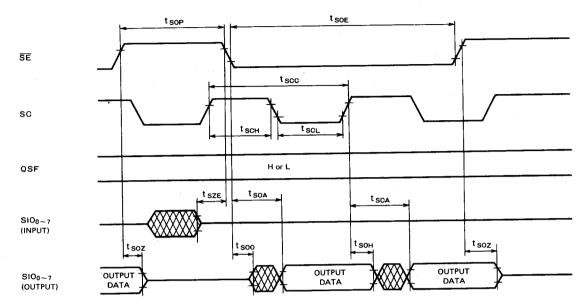

1048576-BIT DUAL-PORT DYNAMIC RAM

Split Read Transfer (to Inactive Register)



This Material Copyrighted By Its Respective Manufacturer

Split Write Transfer Cycle (to Inactive Register) with New Mask



Serial Write Cycle (SC Toggling, $\overline{SE} = L$)

This Material Copyrighted By Its Respective Manufacturer

